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Molecular dynamics based heat-flux auto-correlation functions are combined with a
Green-Kubo relation from the linear response theory to quantify the lattice contribution to
thermal conductivity of single-walled carbon nanotubes with three different chiralities
(screw symmetries). The interactions between carbon atoms within a nanotube are
analyzed using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO)
potential. The results obtained show that, due to a long-term exponential-decay character
of the heat-flux auto-correlation functions, converging values of the lattice thermal
conductivities can be obtained using computational cells considerably smaller than the
phonon mean free path. However, to obtain accurate values of the thermal conductivity, a
spectral Green-Kubo relation and a phonon-based extrapolation function are found to be
instrumental for quantifying the thermal conductivity contribution of the long-wavelength
phonons not allowed in the computational cells of a finite size. The results further show
that chirality of the carbon nanotubes can affect the lattice contribution to the thermal
conductivity by as much as 20%. Also, the simulation results of the effect of temperature on
the thermal conductivity clearly show a competition between an increase in the number of
phonons and an increased probability for phonon scattering at higher temperatures.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
As the size of electronic, optical and mechanical de-
vices is being constantly reduced and the speed of their
operation is being steadily increased, the thermal con-
ductivity of materials at the micro/nano length scale is
becoming an increasingly important issue since for a
reliable operation of such devices, significant amounts
of heat may need to be dissipated from relatively small
regions. In general, however, experimental determina-
tion of the thermal conductivity in nano-scale devices
is quite difficult [e.g. 1], particular in the case of de-
vices with complex geometries. Hence, the develop-
ment of reliable theoretical and computational methods
for predicting thermal properties of the materials and
the devices at a micro/nano length scale is of an utmost
importance [e.g. 2].

Because of their unique properties (e.g. high hardness
and stiffness, light weight, tailorable electronic and op-
tical properties, high chemical stability, etc.), carbon
nanotubes are being currently explored as prime candi-
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date materials in nano-scale device applications. Hence,
considerable effort has been invested in characteriz-
ing properties of carbon nanotubes, particularly their
electronic and mechanical properties [3–6]. Recently,
similar attention has been devoted to the understand-
ing of thermal properties of carbon nanotubes, since
they are being considered for thermal management in
nano-scale devices. As mentioned above, substantial
challenges are associated with nano-scale experimental
measurements of the thermal conductivity. These diffi-
culties are further compounded by major technological
challenges associated with synthesizing high-quality,
well-ordered nanotubes suitable for experimental mea-
surements. Hence, analytical and numerical calcula-
tions of the thermal conductivity of carbon nanotubes
are presently considered as essential tools for elucidat-
ing the mechanism and for quantifying the effectiveness
of heat transport in these materials.

Theoretical calculations of the thermal conductivity
of materials can be generally classified into two main
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categories: (a) First principles based atomistic simula-
tions [e.g. 7–9]. This approach is particularly useful for
nano-scale devices where an experimental determina-
tion of the thermal conductivity is quite challenging;
and (b) Continuum calculations based on transport the-
ories such as the Boltzmann transport equation [10–
12]. The main advantage of the continuum approach
is that it enables an analysis of relatively large sys-
tems. However, the approach entails the knowledge of
certain materials parameters such as the phonon re-
laxation time and the phonon density of states which
must be determined using either experimental measure-
ments (also associated with major difficulties in the case
of nano-scale devices) or by theoretical calculations
(can be quite challenging, time consuming, and/or of a
questionable accuracy). An additional shortcoming of
the continuum approach is that the governing integro-
differential transport equation may be difficult to solve
for some device geometries and boundary conditions.

Due to the aforementioned limitations of the con-
tinuum approach, the first principles based atomistic
simulations are beginning to receive increasingly more
attention as a means of computing the thermal proper-
ties of materials at the nano length scale. In addition to
not requiring a prior knowledge of the model parame-
ters, atomic-scale calculations enable quantification of
the effect of microstructure (e.g. phase interfaces and
surface reconstruction) on thermal properties. In situ-
ations in which the device is too large for its thermal
properties to be studied using an atomic-scale approach,
atomistic simulations can be used to determine the pa-
rameters needed by the continuum models, as discussed
above. Thus, in the latter case, atomistic simulations can
be used to help bridge the gap between the atomistic-
scale and the continuum-level calculations.

Thermal conductivity of a material generally in-
cludes two main components: (a) an electronic compo-
nent which is controlled by the electronic band struc-
ture, electron scattering, and electron-phonon (lattice
vibrations) interaction; and (b) a lattice component
which is mainly controlled by the motion of phonons
and phonon scattering. In the present paper, only the
lattice contribution to thermal conductivity of carbon
nanotubes is considered using atomistic simulations. It
should be noted that the electronic contribution to ther-
mal conductivity is very small and can be neglected in
materials with relatively large band gaps. As far as the
carbon nanotubes are concerned, the size of their band
gap is found to be dependent on their chirality (screw
symmetry), as well as on their diameter and length. The
largest band gap (on the order of 1.5 eV) is found in
small diameter, short (n, m) nanotubes with the rollup
vectors n and m satisfying the condition: |n−m| �= 3p,
where p is an integer. For other types of nanotubes,
the band gap is considerably smaller and tends to ap-
proach zero in the case of “arm chair” nanotubes in
which n = m. For comparison, the band gap in a typ-
ical insulator is on the order of 5–10 eV, of a semi-
conductor in a range between 0.5–2.5 eV, and zero in
a typical metal. Based on these observations, one may
anticipate that the electronic contribution to thermal
conductivity in carbon nanotubes, can be significant

only in the case of carbon nanotubes with a small band
gap, i.e., in the nanotubes which exhibit a metallic-type
behavior.

When thermal conductivity of solid crystalline ma-
terials is being calculated using an atomic-scale ap-
proach, one may expect that the size of the computa-
tional cell must be at least as large as the mean free
path of the phonons in order to prevent phonon scat-
tering from the cell boundaries. This may pose a se-
rious computational challenge since the phonon mean
free path can be on the order of hundreds of nanome-
ters and, hence the computational domain may have to
contain hundreds of thousands of atoms. In addition,
quantification of phonon-phonon interactions (respon-
sible for the finite values of thermal conductivity) is
generally very complicated [e.g. 13]. In a recent study,
Che et al. [2] carried out molecular dynamics simula-
tions and used the linear-response theory based Green-
Kubo equation and the energy-flux auto-correlation
functions to determine the thermal conductivity of dia-
mond. They found that while the accuracy of the ther-
mal conductivity is indeed dependent on the size of
the periodic cell, an accurate thermal conductivity can
be obtained using periodic computational cells whose
edge lengths are about 40–60 times smaller than the
actual phonon mean free path. They attribute this find-
ing to the fact that the heat-flux auto-correlation time
is much shorter than the energy relaxation time. The
approach of Che et al. [2] was used in our recent work
[14] to determine the lattice contribution to the ther-
mal conductivity of single-walled carbon nanotubes at
different temperatures. The results obtained suggested
that the values of lattice thermal conductivity tend to
converge with an increase in the computational cell
size at the cell sizes which are substantially smaller
than the average phonon mean free path in these ma-
terials. In the present paper, we extend our previous
work [14] in order to account for the contribution of
long-wavelength phonons to the lattice thermal con-
ductivity. Such phonons are not permitted in the com-
putational cells typically used in molecular dynamics
simulations. On the other hand, such phonons may
have a significant contribution to the lattice thermal
conductivity.

The organization of the paper is as follows: A brief
overview of the theoretical background related to the
computation of thermal conductivity and the details of
the computational method used are given in Sections 2.1
and 2.2. The main results obtained in the present work
are presented and discussed in Section 3. The key con-
clusions resulting from the present work are given in
Section 4.

2. Procedure
2.1. Theoretical background
For the macroscopic-level steady-state heat conduction,
thermal conductivity, �, is defined by the Fourier’s law
as:

�J q = −� · ∇T (1)
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where �J q is the steady-state heat flux vector, � the
thermal conductivity second order tensor and ∇T the
temperature gradient. A raised arrow is used in Equa-
tion 1 and throughout this paper to denote a vector
quantity.

In general, the total energy flux, �J E, includes the
conduction heat flux, �J q, and the diffusion energy flux,
µ �J , where �J is the particle flux, and µ is the particle
chemical potential. Thus, the following relation can be
defined between the total energy flux and the heat flux
[15]:

�J q = �J E − µ �J . (2)

In solids, (except perhaps at extremely high temper-
atures), the contribution of diffusion to the energy flux
can be neglected and hence: �J q = �J E.

In a classical system consisting of the discrete par-
ticles, the energy density at a location r , h(r ), can be
expressed as the site energy of a particle at that location
and consequently, the heat flux can be defined as:

�J q = 1

V

d

dt

∑

i

�rihi (3)

where V is the system volume, �r the particle position
vector, subscript i is used to denote particle i and t is
the time.

One approach for the determination of the thermal
conductivity by atomistic simulations is to place the
computational cell in contact with two reservoirs with
different temperatures (T1 and T2) and to calculate the
heat flux when the system reaches the steady state.
However, due to small dimensions of the computational
cell (typically 10–50 nm edge side), even a small tem-
perature difference of 10 K across the system corre-
sponds to a thermal gradient on the order of 108 K/m.
It is unlikely that the linear response theory (i.e., the
linearity between the heat flux and the temperature gra-
dient as defined in Equation 1) would hold under such
an extreme thermal loading condition. Moreover, this
temperature gradient maybe smaller than the thermal
fluctuations in the system, making it difficult to obtain
convergence of the simulation results within reasonable
simulation times.

Due to the aforementioned shortcomings of the ap-
proach, the Green-Kubo fluctuation-dissipation theo-
rem [16] from the linear response theory which provides
a connection between the energy dissipation in an irre-
versible process (e.g. heat conduction in the presence
of a temperature gradient) and the equilibrium system
fluctuations (of the heat flux) is used in the present
work. Within this approach, the thermal conductivity
tensor can be expressed in terms of the heat-flux auto-
correlation functions, CC

J (t), [16, 17] as:

�C = V

kBT 2

∫ ∞

0
dtCC

J (t) (4)

where kB is the Boltzmann’s constant, T temperature
and the heat-flux auto-correlation function is defined

as:

CC
J (t) = 〈 �J q (t) · �J q (0)〉. (5)

CC
J (t)is obtained by phase (particles positions and

momenta) space (�) averaging as:

〈 �J q (t) · �J q (0)〉 =
∫

d� exp(−β H ) �J q (t) · �J q (0)∫
d� exp(−β H )

(6)
where

H =
∑

i

hi. (7)

Within the framework of molecular dynamics simu-
lations, Equation 7 is evaluated as:

〈 �J (t) · �J (0)〉 = 1

Ncorr

∑

Ncorr

�J (t0 + t) · �J (t0) (8)

where

t = Nt�t, 0 ≤ Nt ≤ NMD (9)

t0 = N0�t, 0 ≤ N0 ≤ NMD − Nt (10)

and

Ncorr = int (NMD/Nt) , (11)

where t0 and t are respectively the zero and the current
correlation times, �t is the simulation time increment,
NMD is the total number of molecular dynamic simu-
lation steps, N0 and Nt are integers, and int denotes an
operator which converts a real number into the closest
smaller integer.

It should be noted that the analysis presented above
is classical, i.e., no quantum effects are considered. In
general, quantum effects are not critical when the tem-
perature is significantly higher than the Debye tempera-
ture. While the Debye temperature of carbon nanotubes
and its dependence on the nanotube chirality are not
well established, this temperature is expected to be con-
siderably higher than the room temperature considering
the magnitudes of the Debye temperature in other struc-
tural forms of carbon (e.g. around 2000 K for graphite
and 1850–2200 K for diamond). Using a quantum-
physics based analysis, Che et al. [2] showed that in (hy-
pothetical) purely-harmonic systems in which different
phonon modes do not interact, quantum effects are neg-
ligible. In real systems, on the other hand, phonons are
coupled and this anharmonicity is, in fact, responsi-
ble for a finite value of the phonon mean free path, and
hence, for a finite value of the thermal conductivity. For-
tunately, thermal conductivity in such systems is dom-
inated by low-frequency (long wavelength) phonons,
which are generally considered as being nearly classi-
cal. Hence, a lack of inclusion of the quantum correc-
tions is generally considered as being not very critical
when calculating the thermal conductivity of carbon
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TABLE I Structural characteristics of the carbon nanotubes studied
in the preset work

Number of
Nanotube Nanotube Unit cell atoms per
type (n, m) radius (nm) length (nm) unit cell

(10, 10) 1.351 0.2477 40
(18, 0) 1.404 0.4290 72
(14, 6) 1.387 3.8130 632

nanotubes. As far the effects of anharmonicity are con-
cerned, they are important but they are generally ac-
counted for when (classical) molecular dynamics sim-
ulations based on realistic interatomic potentials are
carried out. Hence, it appears justified to use molecular
dynamics simulations to quantify the thermal conduc-
tivity of carbon nanotubes, as is done in the present
work.

2.2. Simulation procedure
Molecular dynamics simulations are conducted using
computational cells which are of a finite size in one and
infinitely long in the other two directions. The periodic
boundary conditions are applied in the finite direction.
Each cell contains a single (n, m) nanotube with the
nanotube axis aligned with the direction in which the
cell is finite. The dimension of the cell in the nanotube
direction is varied in order to accommodate nanotubes
of different chirality and, also, to explore the effect of
the cell size on thermal conductivity. Three types of
carbon nanotubes are studied in the present work: (a)
a (10, 10) armchair type nanotube; (b) a (18, 0) zig-
zag type nanotube; and (c) a (14, 6) nanotube. The first
nanotube is selected because it is frequently found in
synthesized nanotube bundles, while the other two are
selected on the basis that they have the diameter com-
parable to that of the (10, 10) nanotube. Other struc-
tural characteristics of the three nanotubes are given in
Table I while the corresponding atomic arrangements
are shown in Fig. 1a–c.

Figure 1 Atomic Configuration associated with: (a) a (10, 10) arm-chair
nanotube; (b) a (18, 0) zig-zag nanotube; and (c) a (14, 6) nanotube of a
general chirality.

The interactions between carbon atoms have been
modeled using the Adaptive Intermolecular Reactive
Empirical Bond-Order (AIREBO) potential developed
by Stuart et al. [18]. This potential is an extension of
the original Brenner’s Reactive Empirical Bond-Order
(REBO) potential [19] and includes non-bonding (in-
termolecular) atomic interactions. It should be noted
that while frequently the interactions between carbon
atoms within a single single-walled carbon nanotubes
are modeled using only the bonding part of an inter-
atomic potential, the AIREBO potential used in the
present work has been optimized to also include the
non-bonding interactions between carbon atoms of the
same single-walled carbon nanotube. Based on the
AIREBO potential, the total potential energy, Vtot, can
be approximately written as a summation of pair-wise
and three-body interactions as [19]:

Vtot =
∑

i

∑

j>i

Vi j +
∑

i

∑

j>i

∑

k> j

Vijk. (12)

where Vij and Vijk are respectively the two- and the
three-body interaction potentials.

Consequently, the energy of site i , hi , can be defined
as:

hi = p2
i

2mi
+ 1

2

∑

j �=i

Vij + 1

6

∑

j �=i

∑

k �= j,k �=i

Vijk. (13)

where pi and mi are respectively the momentum and the
mass of atom i . Under the condition of a zero net mo-
mentum for the computational system, a combination
of Equations 13 and 3 yields:

�J q(t) = 1

V

{
∑

i

�vihi +
N∑

i=1

N∑

j=1, j �=i

(
1

2
�rij · ( �Fij · �v)

+ 1

6

N∑

k=1,k �=i, j

(�rij + �rik) · ( �Fijk · vi)

)

i

}
, (14)

where the force components on atom i are defined as:

�Fij = −∂Vij

∂�ri

∣∣∣∣
rj,j �=i

and �Fijk = −∂Vijk

∂�ri

∣∣∣∣
rj,rk

(15)

and �vi and �ri are respectively the i-site velocity and po-
sition vectors, while �rij is the i- j sites relative position
vector.

All molecular dynamics simulations in the present
work are carried out using a fixed 1fs time increment.
For each simulation run, the system is first equilibrated
under an isothermal condition using the Berendsen ther-
mostat [20] for 40 ps. Subsequently, constant energy
molecular dynamics simulations are carried out for
400 ps. The atomic positions and velocities obtained
at different simulation times are next used in conjunc-
tion with Equation 14 to calculate the heat flux at ev-
ery time step. The heat-flux auto-correlation function is
next computed as a function of the correlation time us-
ing Equation 8. Lastly, the lattice thermal conductivity
is computed using Equation 4.
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TABL E I I Optical and acoustic weighting factors, Ao and Aa, and relaxation times, τo and τa, obtained by nonlinear least squares fitting of the
heat current autocorrelation function for (10,10) armchair single-walled carbon nanotubes

Numbers Cell Ao τo Aa τa
of atoms length (nm) 10−6 ( J2

cms2 ) (ps) 10−6 ( J2

cms2 ) (ps) A0τ0
A0τ0+Aaτa

400 2.477 3.339 0.074 1.211 17.597 0.0012
800 4.954 3.334 0.070 1.216 17.870 0.0011

1600 9.908 3.299 0.072 1.227 17.940 0.0011
3200 19.816 3.376 0.069 1.232 17.851 0.0011
6400 39.632 3.339 0.070 1.230 17.877 0.0011
Average 3.343 0.070 1.229 17.869

TABL E I I I Optical and acoustic weighting factors, Ao and Aa, and relaxation times, τo and τa, obtained by nonlinear least squares fitting of the
heat current autocorrelation function for (18, 0) zig-zag single-walled carbon nanotubes

Numbers Cell Ao τo Aa τa
of atoms length (nm) 10−6 ( J2

cms2 ) (ps) 10−6 ( J2

cms2 ) (ps) A0τ0
A0τ0+Aaτa

360 2.145 3.327 0.075 1.135 17.230 0.0013
720 4.290 3.329 0.071 1.141 17.306 0.0012

1440 8.580 3.338 0.073 1.150 17.395 0.0012
2880 17.160 3.330 0.071 1.153 17.349 0.0012
5760 34.320 3.344 0.069 1.150 17.401 0.0012
Average 3.338 0.070 1.150 17.375

TABL E IV Optical and acoustic weighting factors, Ao and Aa, and relaxation times, τo and τa, obtained by nonlinear least squares fitting of the
heat current autocorrelation function for (14, 6) single-walled carbon nanotubes

Numbers Cell Ao τo Aa τa
of atoms length (nm) 10−6 ( J2

cms2 ) (ps) 10−6 ( J2

cms2 ) (ps) A0τ0
A0τ0+Aaτa

632 3.813 3.280 0.068 1.129 16.774 0.0012
1264 7.626 3.294 0.070 1.133 16.803 0.0012

528 15.252 3.289 0.069 1.134 16.906 0.0012
5056 30.504 3.330 0.065 1.135 16.899 0.0011
Average 3.311 0.069 1.131 16.880

3. Results and discussion
3.1. The effect of computational cell size
As discussed earlier, the relative magnitudes of the
computational cell size with respect to the phonon mean
free path can be an important factor affecting the ac-
curacy of thermal conductivity computed through the
use of atomistic simulations. When the simulation cell
is too small, the time for phonons to travel through the
simulation cell and to reenter it on the other side of
the cell is shorter than the decay time of the heat-flux
auto-correlation function. This causes phonon scatter-
ing to take place more frequently than it would in an
infinite crystal. Consequently, only the auto-correlation
functions at short correlation times are expected to
be accurate. Nevertheless, Che et al. [2] showed that
thermal conductivity can be computed using computa-
tional cells significantly smaller than the phonon mean
free path. Using the macroscopic laws of relaxation
and the Onsager’s postulate for microscopic thermal
fluctuations, Che et al. [2] first showed that the long-
time (acoustic phonons controlled) asymptotic decay of
the heat-flux auto-correlation function (which makes
the dominant contribution to the thermal conductiv-
ity) is of an exponential type. Consequently, relatively
short-time simulation-based heat-flux auto-correlation
data obtained in medium-size computational cells can
be used to determine quite accurately the exponen-

tial decay parameters of the heat-flux auto-correlation
function.

To determine the effect of the computational cell size
on the lattice contribution to thermal conductivity, five
different sizes of the computational cell are used in
the present work for each of the three selected carbon
nanotubes. The number of atoms in the computational
cell in each case is given in Tables II–IV. Since the
single walled carbon nanotubes are one atomic layer
thick, only the thermal conductivity in the direction
of the nanotubes axis is computed. This is achieved
by using only the data for heat flux in the direction
of nanotubes axis when calculating the corresponding
auto-correlation functions via Equation 5.

Examples of typical heat-current auto-correlation
functions for the (10, 10), (18, 0) and (14, 6) nanotubes
obtained in the present work are shown in Fig. 2a–c,
respectively. These functions are obtained using com-
putational cells containing 3200, 2880 and 2528 atoms,
respectively. In general, the auto-correlation functions
are characterized by a rapid initial decay followed by a
gradual, long-time exponential decay. The initial fast
decay can be attributed to the high-frequency opti-
cal phonon modes which are associated with out-of-
phase vibrations of the atoms residing on two sub-
lattices in the two-dimensional hexagonal nanotube
crystal structure. These phonons are generally scarcely
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Figure 2 Heat-current auto-correlation functions for: (a) a (10, 10); (b) a (18, 0) and (c) a (14, 6) single-walled carbon nanotube at 300 K.

populated and weakly coupled with low-frequency (in-
phase vibration) acoustic modes at room temperature
and, hence, they do not significantly contribute to ther-
mal conductivity. The long-time behavior of the heat-
current auto-correlation functions and, hence, thermal
conductivity is controlled by low-frequency acoustic
phonon modes.

The auto-correlation function results such as the one
shown in Fig. 2a–c are fitted using the Levenberg-
Marquardt nonlinear least-squares method [21] to the
following double exponential function:

CC
J (t) = A0 exp (−t/τo) + Aa exp(−t/τa),

t ≥ 0, (16)

where the subscript o and a are used to denote the opti-
cal and acoustic phonon modes, respectively. Substitu-
tion of Equation 16 in Equation 4 yields the following

expression for the thermal conductivity:

�C = V

kBT 2
(Aoτo + Aaτa). (17)

Following the procedure suggested by Che et al.
[2], the heat-flux auto-correlation function results for
all simulation runs corresponding to the first 3 ps of
the correlation time are fitted to the function defined
in Equation 16 to determine the parameters Ao, τ o,
Aa, and τ a. The results of this procedure are given in
Tables II–IV. A simple analysis of the results shown in
Tables II–IV indicates that the contribution of the high-
frequency optical phonon modes to the thermal con-
ductivity, (Aoτo) / (Aoτo + Aaτa), is indeed very small
and is typically on the order of 0.1%.

The values of the weighting factors Ao and Aa and
the corresponding exponential decay constants τ o and
τ a obtained by the nonlinear least-squares fitting of the
heat-flux auto-correlation functions in the three types
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Figure 3 Lattice thermal conductivity in: (a) a (10, 10); (b) a (18, 0) and (c) a (14, 6) single-walled carbon nanotube at 300 K.

of nanotubes and for the simulation cells with different
numbers of atoms are listed in Table II–IV. To determine
the average values of these parameters, the weighting
factors Ao and Aa are normalized by the nanotube vol-
ume, weighted by the number of atoms in each sim-
ulation and averaged over all simulations for a given
type of nanotube. Similar averaging without volume
normalization is used to obtain average values for the
relaxation times, τ o and τ a. The results of this proce-
dure are listed in Tables II–IV in the row denoted as
“average”.

The dependence of thermal conductivity on the size
of the simulation cell for the three types of carbon nan-
otubes analyzed in the present work is displayed in
Fig. 3a–c. The error bars shown in Fig. 3a–b corre-
spond to ± one standard deviation for the results of
five molecular dynamics runs. The results displayed in
Fig. 3a–c show that, as expected, when the simulation
cell is too small (i.e., contains less than ∼1000 atoms),
the atoms in a region of the simulation cell do not have
enough time to lose their previous dynamic informa-

tion before a periodically equivalent phonon (i.e., the
same phonon which reentered the cell at the opposite
boundary) arrives in this region. Consequently, the cor-
responding correlation functions are contaminated by
such “memory” effects and they do not reflect the dy-
namic behavior encountered in a real system and the
computed thermal conductivity is not very accurate.
On the other hand, when the computational cell size is
increased, the memory effects become less pronounced
and the computed thermal conductivity is more accu-
rate. The results displayed in Fig. 3a–c show that at
larger cell sizes thermal conductivity becomes appar-
ently independent (or very weakly dependent) of the
size of the computational cell. The results shown in
Fig. 3a–c further suggest that there is a minimum “crit-
ical” size of the computational cell beyond which the
memory effects practically do not affect the thermal
conductivity. In the case of the maximum correlation
time of 3 ps, the minimum cell size is approximately
15–20 nm and such cells contain on the order of 3000–
3500 atoms.
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The analysis presented above established a minimum
critical computation cell size beyond which the cell size
does not apparently affect the thermal conductivity. It
is important to determine how the critical cell size com-
pares with the phonon mean free path in single-walled
carbon nanotubes. To estimate the phonon mean free
path, L , the following relation for the thermal conduc-
tivity from the kinetic theory of solids is used [22]:

� ≈ 1

3
CvρvL (18)

where Cv is the mass-based constant-volume specific
heat and v is the speed of sound. The molecular dy-
namics simulations carried out in the present work
yielded the mean interatomic spacing of 0.142 nm.
The density of single-walled carbon nanotubes is diffi-
cult to determine since they are one-atom thick. Since
the single-walled carbon nanotubes are typically found
bundled in ropes with a one-dimensional triangular ar-
rangement and an inter-tube spacing equal to the Van
der Walls radius of carbon (0.17 nm), the nanotubes’
wall thickness is set equal to this value. This procedure
yielded the density of ρ = 2.3 g/cm3. This value is very
close to the bulk density of graphite. The experimen-
tal values for the specific heat of Cv = 500 J/kg/K and
for compressibility of βT = 0.024 GPa−1 for single-
walled carbon nanotubes of comparable diameters has
been taken from Refs. [23] and [24]. Using the follow-
ing equation: v = 1/

√
ρβT, the speed of sound has

been computed as 4,256 m/s. Lastly, using the average
thermal conductivity for the three types of nanotubes,
� = 16.5 W/cm/K, and Equation 18, the mean free
path for acoustic phonons of L ≈ 1,000 nm has been
obtained. Thus, the acoustic phonon mean free path is
larger than the critical computational cell size by a fac-
tor of 50–65.

The finding presented above shows that despite the
fact that the phonon mean free path is considerably
larger than the sizes of the computational cells used, an
apparent convergence in the thermal conductivity can
be obtained, Fig. 3a–c. It should be noted that in order
to set the computational cell size comparable with the
phonon mean free path, computational cells containing
on the order of 107–108 atoms would have to be used.
Molecular dynamics simulations involving such a large
number of atoms, while feasible (particularly if an ad-
vantage is taken of the parallel computing), would be
computational very expensive and are not very appeal-
ing. Instead, as initially suggested by Che et al. [2] and
also reaffirmed in our prior work [14], smaller size sim-
ulation cells and short-time heat-flux auto-correlation
functions can be used to quantify the thermal conduc-
tivity. This suggestion is challenged in the present work
through the use of a spectral Green-Kubo relation, as
discussed in the next section.

3.2. Wavelength cut-off correction
of the thermal conductivity

The results displayed in Fig. 3a–c and discussed in
the previous section suggest that the artifacts asso-
ciated with reentering phonons in the computational

Figure 4 Magnitude of the spectral thermal conductivity in a (10, 10)
single-walled carbon nanotube at 300 K as a function of the frequency.

cells of a finite size can be practically eliminated us-
ing the cell sizes which are 50–60 times smaller than
the phonon mean free path. However, there are ad-
ditional potential artifacts associated with the use of
computational cells of a finite size which need to be ad-
dressed. The potential artifact analyzed in this section
is associated with the fact that in molecular dynam-
ics simulations only the phonons with a wavelength
shorter than or equal to the computational cell size are
permitted. Due to such a wavelength cut-off, the con-
tribution of the long-wavelength (i.e., low-frequency)
phonons to the thermal conductivity is not accounted
for. The long-wavelength phonons are generally asso-
ciated with the largest group velocity and, in accor-
dance with Equation 18, (in which the sound velocity
is replaced with the group velocity), make the largest
contribution to the thermal conductivity. Thus, despite
the apparent convergence of the thermal conductivity
at larger computational cell sizes in Fig. 3(a)–(c), one
may expect that the computed thermal conductivities
are underpredicted since the contribution of the long-
wavelength phonons is not accounted for.

To correct the values of the thermal conductivity ob-
tained in the previous section in order to include the
contribution of the long-wavelength phonons, the pro-
cedure proposed by Volz and Chen [25, 26] is followed
in the present work. Within this procedure, a complex,
frequency-dependent thermal conductivity, �C(ω), is
first defined using the spectral Green-Kubo relation as:

�C(ω) = V

kBT 2

∫ ∞

0
〈 �J q(0) · �J q(t)〉eiωt dt (19)

where ω is the angular frequency.
Next the magnitude of the complex thermal conduc-

tivity is defined within a phonon relaxation time ap-
proximation as:

|� (ω)| = V 〈 �J q(0)2〉/[kB T 2
√

ω2 + τ−2] (20)

where τ is the average phonon relaxation time.
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The heat-flux auto-correlation functions defined in
Section 3.1 are then substituted in Equation 19, and the
resulting equation integrated analytically for the mag-
nitude of the complex thermal conductivity. In these
calculation a minimum cut-off frequency ωcut-off =
5 · 10−4 THz was used which corresponds to an av-
erage wavelength of the permitted phonons of 20 nm.
An example of the results of this procedure is displayed
as filled circles in Fig. 4.

Next, the filled-circle data displayed in Fig. 4 are
fitted to the relation given by Equation 20 using the
Levenberg–Marquardt least-squares procedure [21].
The results of the fitting procedure are shown as a solid
line in Fig. 4. The fitting line is extrapolated to the
zero value of frequency in order to compute the static
thermal conductivity, i.e., the thermal conductivity as-
sociated with the phonons with an infinite wavelength
which, as discussed earlier, make the dominant contri-
bution to the thermal conduction.

The static value of the thermal conductivity com-
puted using the results displayed in Fig. 4, �C =
22.0 W/cm · K is larger than its counterpart obtained
in Section 3.1 (�C = 17.9 W/cm · K) by about 23 per-
cent. Similar results are obtained in the case of other
two carbon nanotubes. This finding suggests that the
contribution of the long-wavelength phonons (which
are not permitted within molecular dynamics simula-
tions based on the computational cell of a finite size) is
indeed significant and has to be taken into account.

3.3. The effect of chirality
The results displayed in Fig. 3a–c further show that chi-
rality has an effect on the lattice part of thermal conduc-
tivity in single-walled carbon nanotubes. Specifically,
thermal conductivity is the highest (λ=17.8 W/cm/K)
in the (10, 10) arm-chair nanotube and the lowest
(λ=15.6 W/cm/K) in the (14, 6) nanotube of general
chirality. Since these results pertain to the lattice con-
tribution to thermal conductivity alone, they have to be
attributed to differences in phonon-phonon interactions
and the resulting differences in mean free path in the
three types of nanotubes. As stated earlier, a detailed
modeling of phonon–phonon interactions is very com-
plicated [13] and it is beyond the scope of the present
study. Nevertheless, it is well established that lattice
thermal conductivity is controlled by the momentum
conservation of the so-called “Umklapp” phonon col-
lisions represented as: k1 + k2 = k3 + G, where k1
and k2 are wave vectors of the colliding phonons, k3
the wave vector of the resulting phonon and G is 2π

times a reciprocal lattice vector. Due to the differences
in chirality and the resulting differences in magnitudes
of the periodic lengths in the axial direction, one could
expect similar differences in the permissible G vectors
and, hence, in the lattice thermal conductivity in the
three nanotubes analyzed.

It should be noted that, based on the magnitude of the
band gap alone, the electronic contribution to the ther-
mal conductivity can also be expected to be the highest
in the metallic-type (10, 10) nanotube and the lowest
in the semiconductor like (14, 6) nanotube. It should
be noted, however, that in addition to the band gap, the

electronic band structure as well as electron-electron
and electron-phonon scattering also affect the elec-
tronic contribution to the thermal conductivity. Nev-
ertheless, the observation that the lattice thermal con-
ductivity can vary by as much as 20% with nanotube
chirality and that the electronic thermal conductivity
can be affected in the same direction by chirality, sug-
gests that the thermal conductivity of individual single-
walled nanotubes in nanotube ropes (consist of nan-
otubes of various chirality) can vary substantially from
one nanotube to the other.

3.4. The effect of temperature
The molecular-dynamics spectral Green-Kubo relation
based procedure for computation of the static thermal
conductivity in the three types of single-walled carbon
nanotubes described in Sections 3.2 is utilized in this
section to quantify the temperature dependence of the
thermal conductivity in these materials. Over the last
few years, there has been a number of experimental
and theoretical investigations of the effect of tempera-
ture on the thermal conductivity in single-walled car-
bon nanotube bundles and of individual multi-walled
carbon nanotubes [24, 27–30]. However, due to serious
experimental challenges discussed earlier, no reliable
experimental data presently exist for the thermal con-
ductivity of individual single-walled carbon nanotubes.

The effect of temperature in a range between 50
and 400 K on the mean value of the thermal con-
ductivity in the three types on single-walled carbon
nanotubes analyzed in the present work is shown in
Fig. 5. The results displayed in Fig. 5, showed that at
the lowest temperature explored, the thermal conduc-
tivity increases with an increase in temperature while
in the upper portion of the temperature range exam-
ined, the thermal conductivity decreases with an in-
crease in temperature. This finding suggests that, at
low temperatures, the thermal conductivity is domi-
nated by the drift of acoustic phonons whose number
increases with temperature while, at high temperatures,
phonon-phonon “Umklapp” scattering which hinders

Figure 5 The effect of temperature on the thermal conductivity in the
three types of single-walled carbon nanotubes analyzed in the present
work.
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heat transfer causes the thermal conductivity to de-
crease with an increase in temperature [25].

For comparison, experimental results pertaining to
the effect of temperature on the thermal conductiv-
ity in a bundle of the single-walled carbon nanotubes
are also displayed in Fig. 5 [27]. While the agreement
between the computational and the experimental re-
sults in the common temperature range can be charac-
terized as only fair, the true validation of the present
computational model entails the availability of exper-
imental thermal conductivities for the isolated single-
walled carbon nanotubes with a known chirality. Un-
fortunately, as stated earlier, such experimental thermal
conductivity data are presently not available.

4. Conclusions
Based on the results obtained in the present work, the
following main conclusions can be drawn:

1. By fitting the long-time molecular-dynamics
based heat-flux auto-correlation functions to a double-
exponential decay relation, the artifacts associated with
reentering phonons in the computational cells smaller
than the phonon mean free path can be practically
eliminated when computing the lattice contribution
to the thermal conductivity in single-walled carbon
nanotubes.

2. However, to account for the contribution of long-
wavelength phonons (not permitted in the computa-
tional cells of a finite size) to the thermal conductivity,
a procedure based on the spectral Green-Kubo rela-
tion from the linear response theory is found to be very
instrumental.

3. The lattice contribution to the thermal conductiv-
ity can vary by as much as 20% in single-walled carbon
nanotubes with a nearly equivalent radius depending on
their chirality.

4. The molecular dynamics based procedure for
computation of the thermal conductivity presented in
the present work clearly shows the competition between
two opposing phenomena during an increase in temper-
ature: (a) an increase in the thermal conductivity due to
an increase in the phonon occupation number and (b) a
decrease in the thermal conductivity due to a ever more
pronounced “Umklapp” phonon scattering.

5. The method presented is not limited to carbon nan-
otubes and can be readily extended to other types of
nanotubes such as boron nitride and vanadium oxide
nanotubes.
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